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Influential nodes identification in complex networks
based on global and local information
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Identifying influential nodes in complex networks is essential for network robust and stability, such as viral marketing
and information control. Various methods have been proposed to define the influence of nodes. In this paper, we com-
prehensively consider the global position and local structure to identify influential nodes. The number of iterations in the
process of k-shell decomposition is taken into consideration, and the improved k-shell decomposition is then put forward.
The improved k-shell decomposition and degree of target node are taken as the benchmark centrality, in addition, as is well
known, the effect between node pairs is inversely proportional to the shortest path length between two nodes, and then we
also consider the effect of neighbors on target node. To evaluate the performance of the proposed method, susceptible-
infected (SI) model is adopted to simulate the spreading process in four real networks, and the experimental results show
that the proposed method has obvious advantages over classical centrality measures in identifying influential nodes.
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1. Introduction

Complex networks have received increasing attention
in recent years. A number of systems in real life can be
represented abstractly by complex networks, such as social
network,[1,2] traffic system,[3,4] power grid,[5,6] and biological
network.[7,8] A small number of special nodes, called influen-
tial nodes, will have a significant influence on the structure and
function of the network. Structural damage or functional fail-
ure of influential nodes will cause the entire network to crash.
Therefore, research on identifying influential nodes is of great
significance for improving the robustness of systems and de-
signing an efficient system structure. On the one hand, we can
control and protect influential nodes to stabilize and secure the
complex systems. For example, we can control some famous
users in social network to prevent rumors from spreading, find-
ing and protecting important airports in aviation network can
avoid the large area delay of routes, protecting key substations
in power grid can prevent large-scale power outages. On the
other hand, we can also attack influential nodes to destroy the
structure and function of a network. For instance, the Stuxnet
virus, developed by the United States and Israel, damaged crit-
ical facilities of Iran’s nuclear power network and successfully
attacked and controlled Iran’s nuclear power network.

Research of influential nodes identification has two lines:
(i) influence ranking of individual node and (ii) identifying a
group of nodes to maximize the influence. In the present paper,

we focus on the former. Up to now, various centrality mea-
sures have been proposed to address this issue, such as degree
centrality (DC),[9] closeness centrality (CC),[10] betweenness
centrality (BC),[11] eigenvector centrality,[12] local centrality
(LC),[13] k-shell decomposition (Ks),[14] etc. Degree central-
ity is a well-known local metric that determines the influence
of node by the number of its nearest neighbors, but it only con-
siders limited local information and ignores the effect of global
information. Closeness centrality and betweenness centrality
are classical measures belonging to global metric. They have
high time complexity because they need to obtain the topolog-
ical characteristics of the entire network, and thus they cannot
be applied to large scale networks. To make a tradeoff between
local metric and global metric, Chen et al.[13] proposed a lo-
cal centrality to identify influential nodes in which the target
node’s neighbors within 4-hops are taken into consideration.
Kitsak et al.[14] found that the influence of node is determined
by node’s location in the network and proposed k-shell decom-
position centrality. The k-shell decomposition strips the nodes
in the outer layer, and the nodes in inner layer are influen-
tial nodes in the network. However, this method is a coarse-
grained sorting algorithm and cannot further distinguish the
influences of nodes. Then many methods were put forward to
modify the k-shell decomposition. Zeng and Zhang[15] con-
sidered the degree information of removing nodes and put for-
ward the mixed degree decomposition method. Lin et al.[16]

considered neighbors’ k-core value and proposed an improved
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k-shell decomposition method. In the field of search engine,
a number of approaches have been put forward to identify
influential nodes such as PageRank,[17] LeaderRank,[18] and
Hits,[19] in these iterative refinement methods the influence of
neighbors is taken into account. Note that centrality measure
cannot work well from a single view, then some researchers
indicated that combining several centrality measures to iden-
tify influential nodes can obtain more accuracy ranking results.
The technique for order preference by similarity to an ideal ob-
ject (TOPSIS) method was used to identify influential nodes in
two actual networks,[20] Yang et al.[21] used Vlsekriterijum-
ska Optimizacija I Kompromisno Resenje (VIKOR) method
to combine several classical centrality measures, Dempster–
Shafer evidence theory was used to comprehensively com-
bine degree centrality, betweenness centrality, and closeness
centrality.[22] The global position and local degree variation
were both considered to identify influential nodes, and en-
tropy method was used to assign weights to the two aspects.[23]

Wang et al.[24] combined the improved k-shell decomposition
and the neighborhood’s effect to give an influential nodes iden-
tifying method with low time complexity and high accuracy.
Zhao et al.[25] considered both local centrality and clustering
coefficient, and provided a new method to identify influential
nodes. In a word, it is still an open issue to establish a model
for identifying the influential nodes.

In this paper, a novel method of identifying influential
nodes, called GLI, is proposed based on global and local in-
formation. The greatest issue with k-shell decomposition is
that it produces many nodes with the same ranking, we con-
sider the number of iterations in the process of k-shell decom-
position and put forward the improved k-shell decomposition.
The improved k-shell decomposition and degree of target node
are chosen as the benchmark centrality, and it is considered in
the GLI that the effect between nodes will decrease with the
increase of the shortest path length between nodes, in addi-
tion, neighbors within 3-hops are considered. To evaluate the
performance of GLI, the susceptible-infected (SI) model[26]

is utilized to simulate the spreading process in four real net-
works, and other classical centrality measures (DC, CC, BC,
and Ks) are employed to compare the GLI. The superiority of
GLI is demonstrated according to four experiments.

The rest of this paper is organized as follows. The related
work is introduced in Section 2 and GLI is proposed in Sec-
tion 3. In Section 4, four experiments are conducted based on
four real networks and the superiority of GLI is proved. In
Section 5 some conclusions are drawn from the present study.

2. Related work
An undirected and unweighted graph is represented as

G= (V,E,A), V = {v1,v2, . . . ,vn} denotes the set of nodes and
E = {e1,e2, . . . ,em} refers to the set of edges, A =

{
ai j
}

is the

adjacency matrix of G: if node i and node j are connected,
ai j = 1; otherwise, ai j = 0.

2.1. Degree centrality

Degree centrality[9] is the simplest and most famous cen-
trality for identifying influential nodes, but it only considers
the number of its nearest neighbors, which is defined as

DC(i) =
n

∑
j

ai j, (1)

where n is the total number of nodes, the greater the degree of
a node, the more influential the node is.

2.2. Closeness centrality

Closeness centrality[10] of node i is defined as the recip-
rocal of the sum of the shortest distances from node i to others
in the network, it is expressed as

CC(i) =
1

∑
n
j=1 di j

, (2)

where di j represents the shortest path between node i and node
j. Greater closeness value of a node implies that the node is
more influential.

2.3. Betweenness centrality

Betweenness centrality[11] is a classical global metric,
which calculates the number of the shortest paths passing
through the node. It is defined as

BC(i) = ∑
s,t 6=i

gst (i)
gst

, (3)

where gst(i) is the number of shortest paths between node s
and node t passing through node i, and gst represents the num-
ber of all possible shortest paths. A node with greater between-
ness value is more influential.

2.4. The k-shell decomposition

The k-shell decomposition[14] assigns an index (ks) to
each node. Assume that there is no isolated node in the net-
work, and take Fig. 1 for example. Firstly, all the nodes with
degree DC = 1 (node 1) and their connected edges are re-
moved, at this time, some new nodes with degree DC = 1
(node 2) may appear in the network. We continue to remove
these nodes and their connected edges, and repeat this opera-
tion until no node with degree DC = 1 exists in the network,
all the removed nodes are assigned with an index ks= 1. Next,
the nodes with degree DC = 2 (node 3, node 4, node 10, node
11, and node 9) and their connected edges are removed in a
similar way, and the removed nodes are assigned with an in-
dex ks = 2. The decomposition process will stop until all the
nodes are removed, and all the nodes are assigned with a ks
index finally.
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Fig. 1. A simple example graph to explain the identifying process of
k-shell decomposition and improved k-shell decomposition.

2.5. Improved k-shell decomposition

In Fig. 1, the influence of node 1 and node 2 are obvi-
ously different, but k-shell decomposition assigns them with
the same ks value. We can find that node 2 is removed after re-
moving node 1, that is, the number of iterations in the process
of k-shell decomposition of node 1 and node 2 are different.
The same situation exists for node 9 and node 10. Therefore,
we come up with the improved k-shell decomposition, which
considers the number of iterations and ks value. We define the
improved k-shell decomposition (Iks) as

Iks(i) = ks(i)+nit(i), (4)

where nit(i) represents the number of iterations of node i.
The improved k-shell decomposition in Fig. 1 is shown in

Table 1. We can find that the improved k-shell decomposition
can identify the difference among nodes more effectively.

Table 1. The improved k-shell decomposition in Fig. 1.

The number of iterations Removed nodes ks Iks

1 1 1 2
2 2 1 3
3 3, 4, 10, 11 2 5
4 9 2 6
5 5, 6, 7, 8 3 8

3. Proposed method
Various centrality measures have been proposed to deter-

mine an actor to be ‘influential’ from their perspectives, which
will lead to some limitations for each measure. However, the
accuracy and effectiveness of influential nodes identification
can be improved by considering the influence of nodes from
multiple perspectives. The global position and degree are clas-
sical centrality measures which consider global information
and local information respectively, and we propose to integrate
these two centrality measures. Besides, the main limitation
of k-shell decomposition is that it leads to a few nodes with

same ranking, then we propose the improved k-shell decom-
position based on the number of iterations. What is more, we
also consider the effect of neighbors, in fact, the effect between
node pairs is inversely proportional to the shortest path length
between two nodes. Therefore, we propose a novel measure
based on global and local information (denoted as GLI). The
GLI considers that the effect between nodes will decrease with
the increase of the shortest path length between nodes, the im-
proved k-shell decomposition and degree are chosen as the
benchmark centrality, and we consider the neighbors within
3-hops. GLI is defined as

Ii = exp
[
(Iks(i)+DC(i))

/
∑

n
i=1 (Iks(i)+DC(i))

]
× ∑

j∈Γ r
i

Iks( j)+DC( j)
di j

, (5)

where Iks(i) and DC(i) denote the improved k-shell value and
degree of node i, respectively; di j is the shortest path length
between node i and node j; Γ r

i denotes the neighborhood set
whose distance to node i is less than or equal to a given value
r; to reduce the time complexity, we set r = 3, i.e., we only
consider the neighbors within 3-hops.

The GLI considers the global position and local structure,
and the neighbors within 3-hops are also taken into consider-
ation. We provide a new method to identify influential nodes
from our perspective. Compared with classical centrality mea-
sures, GLI can give very accuracy and effective ranking re-
sults.

4. Experimental results
4.1. Datasets

To verify the efficiency of GLI, we conduct the exper-
iments with the following four real networks. They are (i)
Karate club network,[27] which is a social network describing
the relationship among 34 members of a Karate Club in the
1970s; (ii) Jazz musicians network,[28] which is a collabora-
tion network among 198 Jazz musicians, with each edge rep-
resenting two musicians play together in a band; (iii) USAir97
network, which is an aviation network with each node denot-
ing an airport, and each edge representing a route between two
airports; (iv) Email network,[29] which is a social network with
each node denoting a user, and each edge representing e-mail
interchange between members.

4.2. SI model

We employ susceptible-infected (SI) model[26] to simu-
late the spreading process and evaluate the performance of
GLI. Each node in the SI model is either in susceptible state
or in infected state. Nodes in susceptible state will be infected
by nodes in infected state with a certain probability, and once
susceptible nodes are infected, they cannot be recovered. Sup-
pose that only one node (node i) in the network is infected at
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t = 0, namely, node i is the source node of spreading process,
and all the other nodes are in susceptible state. Then the source
node infects its neighbors with a certain probability, and at the
same time, the disease or information begins to spread through
the network. The number of infected nodes will be nit after t
(t = 1,2, . . .) time step, and we define the spreading ability of
node i as Ii (t) = nit/n, besides, we set the maximum time step
to be t = 50. To eliminate random error, we run 1000 indepen-
dent simulations.

4.3. Kendall’s tau coefficient

The Kendall’s tau coefficient[30] is adopted to measure the
correlation coefficient between centrality measures and the ac-
tual ranking simulated by SI model. Suppose that there are two
ranking lists X and Y , (x1,y1),(x2,y2), . . . ,(xn,yn) is a set of
joint ranks from the two ranking lists. A pair of distinct nodes
i and j is concordant if ((xi > x j) and (yi > y j)) or ((xi < x j)

and (yi < y j)). If ((xi > x j) and (yi < y j)) or ((xi < x j) and
(xi > x j)), then the node pair is said to be discordant. And the

Kendall’s tau coefficient τ is defined as

τ =
nc−nd

0.5×n× (n−1)
, (6)

where nc and nd are the number of concordant pairs and dis-
cordant pairs, respectively. Generally, τ ∈ [−1,1], τ < 0 indi-
cates negative correlation and τ > 0 represents that two lists
are of positive correlation. The greater the τ value, the better
the performance of a measure is.

4.4. Effectiveness
4.4.1. Experiment 1 for comparing top-10 lists gener-

ated by different methods

We rank the influences of nodes in four networks with
GLI, and other classical centrality measures including DC,
CC, BC, and Ks are applied to the same networks for com-
parison. We choose the top-10 lists generated by each method.
The results to be ranked are presented in Table 2. In addition,
we run SI model to obtain the actual spreading ability rank-
ing I = sort(I1, I2, . . . , In), which is used to compare the top-10
lists from different methods.

Table 2. Comparisons among top-10 lists generated by different methods in four networks. Actual spreading ability ranking I =
sort(I1, I2, . . . , In) is obtained by SI model with 1000 independent simulations.

Karate club Jazz musicians
Rank DC CC BC Ks GLI I Rank DC CC BC Ks GLI I

1 34 1 1 1 1 1 1 136 136 136 60 60 136
2 1 3 34 34 3 34 2 60 60 153 168 136 149
3 33 34 33 33 34 3 3 132 168 60 108 132 96
4 3 32 3 31 33 33 4 168 70 149 122 168 60
5 2 9 32 3 14 2 5 70 83 168 33 108 194
6 4 14 9 14 2 9 6 99 132 167 58 99 70
7 32 33 2 2 9 14 7 108 122 189 66 70 168
8 9 20 14 4 32 32 8 83 194 115 100 131 132
9 14 2 20 8 4 4 9 158 174 96 132 194 83

10 24 4 6 9 20 20 10 7 158 83 179 83 99
USAir97 Email

Rank DC CC BC Ks GLI I Rank DC CC BC Ks GLI I
1 118 118 118 67 118 118 1 105 333 333 299 105 333
2 261 261 8 94 261 261 2 333 23 105 389 333 105
3 255 67 261 109 255 147 3 16 105 23 434 42 42
4 152 255 201 112 182 166 4 23 42 578 552 23 41
5 182 201 47 118 152 67 5 42 41 76 571 76 54
6 230 182 182 131 230 47 6 41 76 233 726 41 52
7 166 47 255 146 166 182 7 196 233 135 756 233 233
8 67 166 152 147 67 152 8 233 52 41 788 3 3
9 112 248 313 150 112 255 9 21 135 355 885 52 76

10 201 112 13 152 147 112 10 76 378 42 886 378 23

According to Table 2, the top-10 lists ranked by different

methods are different. Here we focus on the differences be-

tween the results from each method and the actual spreading

ability ranking. In Karate Club network, the top-10 nodes of

GLI and CC are all the same with I, DC and BC have 9 identi-

cal nodes in the top-10 lists with I, and Ks only has 8 identical

nodes. In Jazz musicians network, GLI owning 8 identical

nodes with I performs best, DC and CC have 7 identical nodes

in the top-10 lists with I, there are 6 identical nodes between

BC and I, while Ks only has 3 identical nodes. In USAir97

network, there are 8, 8, 6, 5, 9 identical nodes in the top-10

lists among DC, CC, BC, Ks, GLI, and I, respectively. As for

Email network, GLI has 9 identical nodes with I, but there is

no identical node between Ks and I, and the DC, CC, and BC
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have 7, 8, and 7 identical nodes with I, respectively. From the
above analysis, we can find that GLI has the most identical
nodes in the top-10 lists with the actual spreading ability rank-
ing, GLI can identify more influential nodes in the top-10 lists
than other methods.

4.4.2. Experiment 2 for comparing frequencies of
nodes with same ranking

When ranking the influence of nodes with different meth-
ods, we find that some nodes are given the same ranking,
which makes it impossible to distinguish them. In addition,
the indistinguishable degrees of nodes generated by different
methods are not the same. Therefore, we focus on the fre-
quencies of nodes with the same ranking of each method in
four networks, the higher the frequency, the more the nodes in
the same ranking are and the worse the distinguishing ability.
Figure 2 shows the frequencies of nodes with the same rank-
ing of each method in four networks. Of the frequencies of the
four networks, the frequency of GLI is the lowest, but DC and
Ks have the highest frequency, which demonstrates that GLI
has the best distinguishing ability.
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Fig. 2. Frequencies of nodes with the same ranking in four networks.

To further analyze the distinguishing ability of different
methods, we introduce the monotonicity index M(R) and it is
defined as[31]

M(R) =
[

1− ∑r∈R nr(nr−1)
n(n−1)

]2

, (7)

where n is the number of nodes in a network, nr represents
the number of nodes with the same ranking value r, and R de-
notes a ranking list. The greater the M(R) value, the better the
monotonicity is. The M(R) = 1 indicates that each node is as-
signed with a different ranking. The monotonicity indices of
different methods in four networks are shown in Table 3.

Table 3. Monotonicity indices of different methods in four networks.

Network M(DC) M(CC) M(BC) M(Ks) M(GLI)

Karate club 0.7079 0.8993 0.7723 0.4958 0.9542

Jazz musicians 0.9659 0.9878 0.9885 0.7944 0.9994

USAir97 0.8586 0.9892 0.6968 0.8114 0.9951

Email 0.8874 0.9988 0.9399 0.8088 0.9999

From Table 3, of the monotonicity values from the above-
mentioned methods, the monotonicity value of GLI is the
greatest, and almost in the four networks, the monotonicity of
Ks is the worst. In the four networks, the fluctuation of mono-
tonicity for Ks is the most apparent. The difference between
monotonicity values of Ks in Karate club network and Jazz
musicians network is approximately 0.3, and the GLI achieves
the greatest and most stable value in the four networks. Then
we can conclude that the GLI has better distinguishing ability
than other methods.

4.4.3. Experiment 3 for comparing average spreading
ability of top-10 nodes

In this part, we compare the average spreading ability
of top-10 nodes ranked by each method in four networks.
The average spreading ability of top-10 nodes is defined as
I(t) = ∑

i∈top−10
Ii (t) and we set the maximum time step to be

t = 50. The SI model is used to simulate the spreading process
in a network and 1000 independent simulations are conducted
to eliminate randomness. Figure 3 shows the spreading ability
top-10 nodes of each method in four networks. The greater the
infected nodes, the stronger the spreading ability is.

According to Fig. 3, the infected nodes increase with
time step increasing and finally reaches a stable value. In
general, the GLI achieves better spreading performance than
other methods almost in the four networks. Specifically, in
the Karate club network, the curves of GLI and CC overlap
because their top-10 nodes are the same, and they have more
infected nodes than DC, Ks, and BC at each time step. In the
Jazz musicians network, the average spreading ability of GLI
is slightly stronger than that of CC, and significantly stronger
than those of DC, Ks, and BC. In USAir97 network, GLI and
DC have the similar average spreading ability because their
curves almost overlap, and they slightly outperform CC and
Ks, but BC has the worst performance in average spreading
ability. As for the Email network, the average spreading ability
of GLI is marginally stronger than those of CC, DC, and BC,
and the infected nodes of Ks are less than those of other meth-
ods at each time step. Overall speaking, the average spreading
ability of GLI is stronger than those of other methods, which
indicates that the GLI can identify influential nodes more ef-
fectively.
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Fig. 3. Average spreading ability of top-10 nodes ranked by each method in four networks.
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4.4.4. Experiment 4 for comparing Kendall’s tau coeffi-
cients between different methods and the actual
ranking list γ

In this part, we pay attention to the correlation between
methods and the actual ranking list. The actual ranking list
γ simulated by SI model is taken as an actual spreading sit-
uation, and the other ranking lists generated by each method
are compared with γ . Figure 4 shows the correlation between
each method and γ when the spreading probability varies from
0 to 0.1. In the Karate club network, the Kendall’s tau coef-
ficient τ of GLI is higher than those of other methods when
the spreading probability is greater than 0.03. In the Jazz mu-
sicians network, when the spreading probability is less than
0.04, the GLI has a higher correlation with γ than others, but
the τ values of DC and CC are greater than that of GLI with
the increase of spreading probability. Under the same condi-
tion, for the USAir97 network when the spreading probability
is less than 0.06, the GLI has a higher correlation with γ than
others. As for Email network, GLI has higher τ value than
other methods in almost the entire spreading probability. The
BC has the weakest correlation with γ in the four networks.
The above analyses indicate that GLI can accurately identify
the influential nodes.

5. Conclusions and perspectives
In this paper, various methods are proposed to identify

influential nodes in complex networks from different perspec-
tives, each method has its own viewpoint to define an actor to
be ‘influential’. We comprehensively consider global and local
information to identify influential nodes, and the GLI method
is then put forward. Firstly, we improve k-shell decomposition
through considering the number of iterations in the process of
k-shell decomposition, and the improved k-shell decomposi-
tion is considered as a global structure. Then, degree central-
ity is considered as a local structure, and the combination of
global and local structure is taken as the benchmark centrality.
Finally, we consider the effect of neighbors within 3-hops on
the target node, and GLI method is established. The GLI com-
prehensively combines global position and local degree, thus
providing a more accurate and effective approach to identify-
ing the influential nodes. We utilize the SI model to simulate
the spreading process in network, and four experiments are
conducted to demonstrate the superiority of GLI. Experimen-

tal results show that the GLI method has obvious advantages
over the classical centrality measures.
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